

MKANGO RESOURCES

Raw Materials and Technology for the CleanTech Revolution

AIM / TSX-V: MKA

Rare Earths

This presentation (the "Presentation") has been prepared by Mkango Resources Ltd (the "Company" or "Mkango") solely for its use at informational meetings relating to it or is being delivered for information purposes only to a limited number of persons. By attending the meeting where this Presentation is made, or by reading the presentation slides, you agree to be bound by the following limitations.

This Presentation does not constitute or form part of any offer for sale or solicitation of any offer to buy or subscribe for any securities nor shall it or any part of it form the basis of or be relied on in connection with, or act as any inducement to enter into, any contract or commitment whatsoever. This Presentation is not, and under no circumstances is to be construed as, an advertisement or a public offering of the securities referred to in this document. Recipients of this Presentation who are considering acquiring securities of the Company are referred to the entire body of publicly disclosed information regarding the Company. No securities commission has reviewed this Presentation nor passed on the merits of the securities referred to herein and it is an offense to represent otherwise. No liability whatsoever is accepted for any loss however arising from any use of this Presentation or its contents or otherwise in connection with the acquisition of securities of the Company.

The information contained in this Presentation does not purport to be all-inclusive or to contain all the information that an investor may desire to have in evaluating whether or not to make an investment in the Company. The information is qualified entirely by reference to the Company's publicly disclosed information.

No representation or warranty, express or implied, is made or given by or on behalf of the Company nor its shareholders, directors, officers, agents, advisors or employees of any such entities as to the accuracy, completeness, accuracy, reliability or fairness of the information or opinions contained in this Presentation and no responsibility or liability is accepted by any person for such information or opinions or any revision thereof, or of any other written or oral information made or to be made available to any interested party or its advisers (all such information being referred to as "Information") and liability therefore is expressly disclaimed. Accordingly, neither the Company nor any of its shareholders, directors, officers, agents, employees or advisers take any responsibility for, or will accept any liability whether direct or indirect, express or implied, contractual, tortuous, statutory or otherwise, in respect of the accuracy or completeness of the Information or for any of the opinions contained herein or for any errors, omissions or misstatements or for any loss, howsoever arising from the use of this Presentation. In furnishing this Presentation, the Company does not undertake or agree to any obligation to provide the attendees with access to any additional information or to update this Presentation or to correct any inaccuracies in, or omissions from, this Presentation that may become apparent. The information and opinions contained in this Presentation are provided as at the date of this Presentation. The contents of this Presentation are not to be construed as legal, financial or tax advice. Each prospective investor should contact his, her or its own legal adviser, independent financial adviser or tax adviser for legal, financial or tax advice. Past performance of the Company or its shares cannot be relied on as a guide to future performance. This Presentation does not constitute, or form part of or contain any invitation or offer to any person to underwrite, subscribe for, otherwise acquire, or dispose of any securities in the Company or advise persons to do so in any jurisdiction, nor shall it, or any part of it, form the basis of or be relied on in connection with or act as an inducement to enter into any contract or commitment therefore. This Presentation does not constitute a recommendation regarding the securities of the Company. No reliance may be placed for any purpose whatsoever on the information or opinions contained in this Presentation or on its completeness and no liability whatsoever is accepted for any loss howsoever arising from any use of this Presentation or its contents or otherwise in connection therewith.

Dr Scott Swinden of Swinden Geoscience Consultants Ltd is a qualified person for purposes of Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Dr Swinden has approved and verified the scientific and technical information in this presentation related to the Mineral Resource estimate and Thambani Project. The Mineral Reserve calculation contained in this Presentation was completed by The MSA Group (Pty) Ltd. under the supervision of Clive Brown, who is a "Qualified Person" in accordance with NI 43-101. The process design and cost estimation for the integrated processing plant and the infrastructure associated with the integrated processing plant for the Pre-feasibility Study (the "Study") was completed by SNC-Lavalin (Pty) Ltd. under the supervision of Nick Dempers and Craig de Jager, respectively, each of whom are a "Qualified Person" in accordance with NI 43-101.

A complete description of technical and scientific information related to the Songwe Hill project is contained in (i) the report titled "NI 43-101 Technical Report and Mineral Resource Estimate for the Songwe Hill Rare Earth Element (REE) Project, Phalombe District, Republic of Malawi", dated November 22, 2012 and authored by Scott Swinden, PhD, P.Geo and Michael Hall, Pr.Sci.Nat., MAusIMM (the "Technical Report"), which has been filed and is available at www.sedar.com; (ii) the NI 43-101 compliant Technical Report") Report in respect of the results of the Study described herein being prepared by The MSA Group (Pty) Ltd. under the guidance of Rob Croll, Principal Consultant for The MSA

Group (Pty) Ltd., who is a "Qualified Person" in accordance with NI 43-101 and which was filed at www.sedar.com on December 1st 2015. All of the Qualified Persons referred to above are independent of the Company.

Certain disclosures contained in or incorporated by reference into this presentation constitute forward-looking statements or forward-looking information. Any statements contained herein that are not statements of historical facts may be deemed to be forward-looking statements or forward-looking information. Forward-looking statements are often, but not always, identified by the use of words such as "anticipate", "believes", "budget", "continue", "could", "estimate", "forecast", "intends", "may", "plan", "predicts", "projects", "should", "will" and other similar expressions. All estimates and statements that describe the Company's future, goals, or objectives, including management's assessment of future plans and operations, may constitute forward-looking information under securities laws.

By their nature, forward-looking statements are subject to numerous risks and uncertainties, some of which are beyond Mkango's control, including the impact of general economic conditions, industry conditions, volatility of commodity prices, currency fluctuations, imprecision of reserve estimates, environmental risks, changes in environmental, tax and royalty legislation, competition from other industry participants, the lack of availability of qualified personnel or management, stock market volatility, and ability to access sufficient capital from internal and external sources and those risk factors identified in the Company's publicly filed disclosure documents available at www.sedar.com. Readers are cautioned that the assumptions used in the preparation of such information, although considered reasonable at the time of preparation, may prove to be imprecise and, as such, undue reliance should not be placed on forward-looking statements or forward-looking information. Mkango's actual results, performance or achievement could differ materially from those expressed in, or implied by, these forward-looking statements or if any of them do so, what benefits that Mkango will derive therefrom. Mkango disclaims any intention or obligation to update or revise any forward-looking statements or forward-looking information, whether as a result of new information, future events or otherwise, except as required by law.

This presentation may contain forward-looking statements, including 'forward-looking statements' within the meaning of the United States Private Securities Litigation Reform Act of 1995. Words such as 'expects', 'anticipates', 'intends' or the negative of these terms and other similar expressions of future performance or results, and their negatives are intended to identify such forward-looking statements. These forward looking statements are made as of the date hereof and are based upon current expectations and assumptions regarding anticipated developments and other factors affecting the Company. They are not historical facts, nor are they guarantees of future performance. Because these forward-looking statements involve risks and uncertainties, there are important factors that could cause actual results to differ materially from those expressed or implied by these forward-looking statements. Nothing in this Presentation or in documents referred to in it should be considered as a profit forecast and Mkango's forwardlooking statements are expressly qualified in their entirety by this cautionary statement.

The delivery or distribution of this Presentation in or to persons in certain jurisdictions may be restricted by law and persons into whose possession this Presentation comes should inform themselves about, and observe, any such restrictions. Any failure to comply with these restrictions may constitute a violation of the laws of the relevant jurisdiction.

The content of this Presentation has not been approved by an authorised person within the meaning of the United Kingdom Financial Services and Markets Act 2000 ("FSMA") and accordingly it is being delivered in the United Kingdom only to persons to whom this Presentation may be delivered without contravening the financial promotion prohibition in Section 21 of the FSMA. Those persons are described in the Financial Services and Markets Act 2000 (Financial Promotion) Order 2005 ("Order") and include persons who have professional experience in matters relating to investments and who fall within the category of person set out in the Article 19 (investment professionals) of the Order or high net worth bodies corporate, unincorporated associations or partnerships and trustees of high net worth trusts as described in Article 49 of the Order.

Any investment activity to which this Presentation relates in the United Kingdom is available to, and will only be engaged with such relevant persons and this Presentation should not be acted or relied upon in the United Kingdom by persons of any other description. This Presentation has not been approved as a prospectus by the UK Financial Services Authority ("FSA") under Section 87A of FSMA and has not been filed with the FSA pursuant to the United Kingdom Prospectus Rules. No offer of securities in the Company is being or will be made in the United Kingdom in circumstances which would require such a prospectus to be prepared.

RRANGO

Technology Metals from the "Warm Heart of Africa"

- ✓ Focused on the advanced stage Songwe Hill rare earths project in Malawi
- ✓ Well positioned to benefit from supply demand deficit in NdPr used in electric vehicles
- ✓ Pre-feasibility study (2015) → NPV US\$345m; IRR 37%
- ✓ Landmark agreement with Talaxis, wholly owned by Noble Group:
 - > Talaxis to invest £12m to fully fund BFS for 49% of Songwe
 - > Talaxis option to increase to 75% by arranging finance for Songwe development
 - Investment of £2m for 49% of Newco, focused on magnet and EV technology
 - > Preferred partners in rare earths sector and in Malawi

Talaxis agreement unlocks pathway to production

Talaxis Funding Structure

On completion of Talaxis investments, Mkango's interest in Songwe would be 25%, free carried to production

Corporate Snapshot

Capital Structure	
Share Price (16/11):	£0.101 / C\$0.165
Shares Outstanding:	~98.9M
Warrants:	43.5M @ £0.066 7.6M @ C\$0.60 7.8M @ C\$0.15 0.6M @ £0.035
Options:	7.0M @ C\$0.06
	2.8M @ C\$0.07
Fully Diluted:	~168.2M
Market Cap (16/11):	~£10.0M / C\$16.3M

Major Shareholders	
Talaxis (Noble Group)	14.4%
RESOC	10.0%
Leominex ¹	8.6%
M McNulty	5.1%
JXC Ventures	3.7%
Rare Earth Elements Fund	3.0%
Metals Exploration Fund	3.0%

¹ W Dawes and A Lemon each hold 17.3% of Leominex

Cash position of US\$498,352 as at June 30, 2017. Talaxis invested £500k in October 2017 and holds 12m warrants exercisable at 6.6p

Experienced Team with Technical, Financial, Legal Expertise

Mr William Dawes, Chief Executive Officer & Co-founder

BSc Geology, MSc Mineral Exploration, Over 20 years experience in exploration, business development, investment banking; prior experience at Rio Tinto, Robert Fleming, Chase Manhattan and JP Morgan

Mr Alexander Lemon, President & Co-founder

BSc Geological Sciences, MSc Mineral Exploration, Over 20 years experience in exploration, operations management; prior experience as Managing Director of Gold and Mineral Excavation Inc

Mr Derek Linfield (Chairman)

Legal consultant and former Managing Partner of Stikeman Elliott (London) LLP, having over 18 years experience in London focusing on the mining and oil & gas sectors, primarily in Africa

Mr Adrian Reynolds (NED)

Over 30 years experience in the natural resources sector, 15 years with Randgold, Chairman of Digby Wells Environmental, Non-Executive Director of Geodrill Itd.

Mr David Berg (NED)

Former Chairman and Director of Potash One Inc

Mr Eugene Chen (NED)

Corporate Finance and Securities lawyer.

12 year track record in Malawi, last 8 years focused on rare earths

Neodymium (Nd) and Praseodymium (Pr) Critical Elements for Permanent Magnet Motors in Electric Cars... ("By 2035, we think there

"By 2035, we think there will be around 140 million EVs on the roads, or 8% of the total fleet of 1.8 billion."

BHP Billiton, Sept 2016

 Total Battery EV Fleet:

 2017 – 2 million

 2025 – 38 million

 2035 – 234 million

 2050 – 1,075 million

 Morgan Stanley forecasts,

 May 2017

UBS, May 2017 - 655% increase in rare earths demand in a 100% EV World

> Major NdPr supply demand deficit anticipated in coming years

... with Wind Power another Key Demand Growth Area

Each 3 MW direct drive wind turbine uses around 1.7 tonnes of rare earth magnets

RRANGO

Supply Constrained, China Leading Demand Huge Appetite for NdPr to Supply Expanding Permanent Magnet Production

Source: IEA Global EV Outlook, June 2017

- EV demand geared to urbanisation, pollution policy, consumer demand, increasing car ownership – these and other growth areas driving NdPr demand
- Whereas REE supply constrained by consolidation and industry restructuring, environmental compliance, downstream expansion and other Govt policies

EU vulnerable to Shortages of NdPr

Source: European Commission JRC report 2016 - Assessment of potential bottlenecks along the materials supply chain for the future deployment of low-carbon energy and transport technologies in the EU

Malawi – Stable Jurisdiction, Favourable Operating Environment

- ✓ World class, undeveloped rare earth mineral province
- ✓ Transport infrastructure
- ✓ Power developments
- Politically stable democracy

Uniquely positioned in a rare earths mineral province of global significance

Good Road Network, New Rail Line, Dry Port and Power Developments

13

Songwe Hill Rare Earth Deposit

- Long mine life
- **Open pit operation**
- **Favourable topography**
- **Broad zones of mineralisation**
- **Contract mining**
- **Readily leachable light and heavy REEs**

Pre-feasibility study was based on production of high grade, purified mixed chemical concentrate

Scanning electron microscope (SEM) colour montage: blue = synchysite (light rare earth enriched); yellow = apatite (heavy rare earth enriched); red = carbonate 14

- ✓ NPV US\$345m and IRR 37%
- Development CAPEX of US\$216m amongst the lowest in the sector
- Production of circa 2,841tpy rare earths in conc including 1,025tpy NdPr, Dy & Tb used in magnets
- 18 year mine life based based on only 27% of 43-101 compliant resource

PFS identified significant potential to optimise project

Summary of Key Outputs	
Total ore mined and processed (tonnes)	8,482,603
Average strip ratio	4.5
Total waste mined (tonnes)	38,441,726
Average life of mine TREO grade (%)	1.60
Mine Life (years)	18
Total REO recovered to concentrate ¹ (tonnes)	48,275
Annual ore mined and processed ² (tonnes)	500,000

1 A large proportion of the cerium will be selectively removed during the hydrometallurgical process 2 Average annual at full capacity excluding first and last years

Initial capital expenditure	US\$m
Site facilities and infrastructure	36.3
Mining	1.7
Beneficiation plant	43.0
Hydrometallurgical plant	54.4
Sulphuric acid plant	34.7
Tailings storage facility	12.7
Other costs	14.0
Total initial capital expenditure	196.6
Contingency	19.7
Total initial capital expenditure including contingency	216.3

More than 80% of value geared to NdPr and other "Magnet" Rare Earths used in Electric Vehicles, Wind Turbines, HiTech

Neodymium ✓ *Praseodymium* ✓ *Dysprosium* ✓ *Terbium* ✓

Pre-Feasibility Study based on 8.5mt Reserve Total 43-101 Indicated and Inferred Resource of 32mt

2015 Mineral Reserve Estimate (PFS)															
	1.0% TREO cut off grade														
	Tonnes (million)	TREO (%)	TREO (tonnes)												
Probable	8.48	1.60	136,139												

- ✓ Conservative Mineral Reserve cut−off grade versus pay limit (0.51% TREO)
- ✓ Mineral Reserve based on Indicated Resource only

	2012 Mineral Resource Estimate														
	1.0% TREO cut off grade1.5% TREO cut off grade														
	Tonnes (million)	TREO (%)	TREO (tonnes)	Tonnes (million)	TREO (%)	TREO (tonnes)									
Indicated	13.16	1.62	213,098	6.15	2.05	126,065									
Inferred	18.59	1.38	256,149	5.06	1.83	92,412									

TREO – total rare earth oxides. Mineral Resources which are not Mineral Reserves do not have demonstrated economic viability. Mineral Resources are inclusive of Mineral Reserves. Full mineral resources estimate can be found on page 142-175 of the Technical Report on <u>www.sedar.com</u>. The following modifying factor were used to convert the Mineral Resource Estimate to the Mineral Reserve Estimate: Mining recovery – 95%, Mining dilution – 5%, plant recovery 34%, product price US\$59.76/kg TREO, operating cost US\$93.55/t ore processed / US\$16.44/kg TREO recovered.

Mine Development – Potential Upside

In-pit Inferred Resources currently treated as waste potential to lower strip ratio and operating costs, extend mine life – will be focus of infill drilling during BFS

Radiometric Survey Highlights Potential to Expand Resource

Stage 1 & 2 drill holes superimposed on thorium / potassium radiometrics

Further Rare Earths Exploration Potential in Licence Area

Scope of Bankable Feasibility Study

- ✓ Infill, geotechnical and exploration drilling updated 43-101 resource
- Environmental, social and health impact assessment (ESHIA)
- Flotation and hydrometallurgical flowsheet optimisation
- Evaluation of partial separation to produce NdPr product
- Pilot testing of flow sheet and plant design
- ✓ CAPEX and OPEX estimation
- Mine planning and reserve calculation
- Infrastructure, logistics and marketing
- Mining licence application and development agreement

Collaboration with Metalysis – Focused on NdPr Magnet Alloys for Electric Vehicle and 3D Printing Applications

Songwe Hill Rare Earths Project, Malawi Metalysis JV, UK

Uniquely positioned in the rare earths sector – disruptive alloy technology underpinned by substantial ex China resource base

Metalysis' Solid State Process to Produce Alloys – Significant Advantages Versus Traditional Routes

Phase 1 R&D Successfully produced a NdFeB alloy powder using the Metalysis technology – Phase 2 R&D commencing

METALYSIS

Key Advantages of Metalysis' Technology

- ✓ Solid state technology no melting required to produce alloy
- ✓ Semi-batch multi metal capability
- ✓ Modular commercially proven at scale
- Tight controllability tailored particle sizes for huge number of alloy compositions
- ✓ Cleaner and greener than traditional metal production

Produces metal and alloy powders particularly suited to 3D printing techniques, also amenable to conventional technology

METALYSIS

Current Work Programme and Next Steps

- Definitive investment and joint venture agreements with Talaxis
- Commence bankable feasibility study
- Phase II development programme with Metalysis

Thambani Uranium-Tantalum-Niobium Project

Thambani Project - Work Completed to Date

- ✓ Review of historical data
- Acquisition of Landsat7 and ASTER satellite imagery
- ✓ Geochemical grab sampling
- Geological mapping
- Re-trenching and systematic trench sampling program
- ✓ Radiometric and magnetic surveys

Thambani Uranium – Tantalum – Niobium Mineralisation

- Thambani uranium mineralisation is hosted in:
 - a) main Thambani Massif syenite gneiss body (widely disseminated)
 - b) feldspathic-granulite bands, segregations and veins occurring as units in the Massif
 - c) Late-stage concordant and discordant feldspathic-rich pegmatites

Assays from the 20 highest grade U₃O₈ samples from the May 2017 Thambani sampling programme

Sample no.	U ₃ O ₈ %	1a ₂ O ₅ %	ND ₂ O ₅ %
U3141	3.26	1.90	5.92
U3183	3.18	1.52	6.01
U3136	1.01	0.48	3.25
U3111	0.88	0.42	1.49
U3127	0.55	0.31	1.51
U3135	0.53	0.27	1.32
U3122	0.52	0.24	1.08
U3125	0.45	0.20	0.85
U3115	0.44	0.22	0.98
U3121	0.42	0.24	1.36
U3137	0.40	0.19	0.87
U3124	0.40	0.21	0.96
U3168	0.37	0.20	0.71
U3129	0.36	0.16	0.65
U3176	0.33	0.19	0.59
U3131	0.28	0.13	0.53
U3133	0.22	0.12	0.60
U3118	0.22	0.13	0.38
U3172	0.17	0.14	0.39
U3119	0.17	0.09	0.46

May 2017 - Assay results from 85 rock grab samples returned high grade uranium, tantalum and niobium values, ranging up to 3.3 % U_3O_8 , 1.9 % Ta_2O_5 and 6.0 % Nb_2O_5 . 35 of the samples graded above 500ppm U_3O_8 and 24 graded above 1,000ppm U_3O_8 .

Airborne Uranium Radiometric Anomalies at Thambani

Recent CSR Initiatives

Recent Corporate Social Responsibility initiatives

boNGO Worldwide partnership

- Happy Classrooms project
- Enhancing 3 local primary schools
- > 24 classrooms painted

Annual Scholarship programme

Pays Secondary Education Fees for the top
 6 students from 3 local primary schools

Local Community Infrastructure projects

- Three water boreholes & pumps installed, others restored in the local area
- Bridge construction & road refurbishment
 between Noah and Mphembezu villages

Before - An unhappy classroom

After - A happy classroom after renovation & painting syllabus on the classroom wall

Water Pump Mphembezu

New Bridge Constructed

12 BUSINESS

MKANGO

THE DAILY TIMES, Thursday, January 29, 2015

Mkango donates K6m A items to flood victims

TIMELY-Mkango Resources officials presentin

diversify their farming activities so tobacco

that when such disasters strike, they rains, the

He urged the communities to

should be able to survive.

BY CAROLINE KANDIERO

KANGO Resources, explorers of rare earth elements at Songwe Hill in Phalombe, has donated various items worth K6.2 million to 470 households who were hit by floods some weeks ago around the exploration area.

The items included maize flour, blankets, plastic sheets, buckets, plastic cups and plates and 3,000 exercise books and pencils that were donated to three primary schools within the area.

Mkango Country Director Buxton Kachinjika said although the company has not started mining in the area, it is still their responsibility to contribute to the welfare of the communities they work with.

He said as a corporate citizen, they had to respond to the call for assistance made by the communities.

"The people affected are like our brothers and sisters and we had to come to their rescue when the disaster struck them. Most of them have lost houses and food, and we are only giving them a starter pack to give them hope," said Kachinjika.

"M

well, her

Apple results smash Wall Street

APPLE inc quarterly results smashed Wall Street expectations with record sales of big-screen iPhones in the holiday shopping season and a 70 percent rise in China sales, powering the company to the largest profit in corporate history.

The company sold 74.5 million iPhones in its fiscal first quarter ended Dec. 27, while many analysts had expected fewer than 70 million. Revenue rose to US\$74.6 billion from US\$57.6 billion a year earlier.

Profit of US\$18 billion was the biggest ever reported by a public company, worldwide, according to S&P analyst Howard Silverblatt. Apple's cash pile is now US\$178 billion, enough to buy IBM or the equivalent to US\$556 for every

Saved by Mkango Resources

Malawi recently received unprecedented amount of rainfall, which resulted in heavy flooding and sweeping away of crops. Phalombe is one of the districts where families lost property, livestock and foodstuffs to floods. And in an effort to alleviate their suffering, rare earth explorers-Mkango Resources Limited-on Tuesday donated assorted relief items valued at K6.2 million. In the picture, a beneficiary carries home her share of the items.-WATIPASO MZUNGU JNR. STAFF WRITER

6 NEWS & INSIGHT **MINING REVIEW** MINING REVIEW January 2015 NEWS & INSIGHT January 2015 Mkango empowering Phalombe farming communiti

- Rare earth prospector donates pigeon pea seed to 1,000 farming families
- Mkango aiming to introduce commercial farming to subsistence farming communities

has once ducing again proved to be a partner in need to the farming communities sarrounding its flagship Songwe Hill Rare Earth Project in that suites the area's con-Malawi's Southern Dis- ditions and fetches good trict of Phalombe by donating pigeon pea seeds of a high yielding variety nity members," he said. known as N'nthawajuni ished smallholder farm-Country Manager for unfortunately, the crop did

Mkango Resources, Mr. not flourish due to unfa- area. Burton Kachinjika, said the firm, which also provided seeds to the farming soil communities in the previous three growing seasons, has repeated the program again this year as tional Small Holder Farma way of showing its com- ers Association of Malawi mitment to develop the (NASFAM) on the issue,

Kachinjika explained certain variety of pigeon that Mkango, which is peas, in vernacular known prospecting for rare earth elements at Songwe Hill, has been providing varitive for the area. ous kinds of seeds to the farming communities in

gramme that aims at find- Group Village Headman of new farmers. ing a cash crop that suites Maone, Traditional Authe area's particular thority Nazombe, Kachinweather conditions. "As a stakeholder part-

Mkango Resources employeesoff-loading bags of the seed

vision is to economically ing season we provided empower the area's sub-3000 kilograms of highsistence farmers by introyielding pigeon pea seed variety called Mwaiwathu them to commercial farming. Alimi (ICEAP 005577) to Through this seed distri- 60 farmers, but, unfortubution programme, we nately, the crop did not want to identify a crop crop well. We, therefore, discussed with local farmers and experts from prices on the market for NASFAM to discover the benefit of the commuwhat crop the local farmers prefer and they opted Previously, the firm for a certain variety of pior Agora to the impover- gave the farming commu- geon peas locally known nities sova bean and pi- as N'nthawajuni or Agora geon pea seeds but, which is known to favour the conditions of the vorable weather condi-

Today we are giving tions and incompatible them 4000 kilograms of the preferred variety Kachinjika explained which will be shared among 1000 farming famthat in consequence, Mkango engaged the Noilies, with each one getting 4kgs," Kochiniika.

He explained that the and they advised that a arrangement is that, upon harvesting the crop, each farmer would be required as Nandolo or Emeeri. to return 8 kg of their prowould be a better alternaceeds to Mkango Resources Ltd for safe Speaking during the storage, so that the seed presentation ceremony will be redistributed in the the area over the past four held at the firm's project following growing season years as part of a trial pro-site situated in the area of to an increasing number

"This is a seed buildup revolving fund which jika said the company every farming household would not give up until in the area should eventuner to the people of the appropriate cash crop ally benefit from. We hope Phalombe and in particu- for the area is discovered. through this initiative, the

Mr. Kachiniika (c) and Mkanoo Resources administrator, Effie Likaku (far right), making a symbolic presentation of the seed to two of the traditional leaders for the area

Beneficiaries of the Mkango Resources initiative

Kachinjika address members of the farming communities

All-smiles: farmers shake hands in celebration

farmers would be able to the potential future min- sults released indicated yield enough produce ing activities that may that the deposit has a poboth for domestic consumption and for sale," Kachinika. Kachinjika said.

He also said Mkango Resources is jointly working with NASFAM to identify markets that offer mony, Village Head Nabetter prices for the promalamba duce In his speech, NAS-

FAM field officer for showing total commit- earth producer. Phalombe, Assistant ment towards the project, Joseph Magawa, advised the farmers to intercrop velop the area. the pigeon seed with maize, which is the major

staple crop for the area. cash crop that will aid us Magawa estimated economically indicate that that the 4 kg would be you are sincere in your enough to eater for a half dealings with the people acre field and a yield of of this area. The people 300 to 500 kg per half led by traditional leaders, acre would be realized if really appreciate your proper ways of caring for commitment. We will the crop are followed. partner you all the way, Besides the seed distribecause we have noticed programme, that your continued stay in bution Mkanno Resources has our area is mutually benedrilled and repaired an infitting us," said Nacreasing number of water malamba. boreholes in the area to Mkango has been car-

provide portable water for rying out its rare earth exthe communities, constructed access roads and bridges, and is also carrying out a bridge and a road maintenance programme ploration Ltd. as part of its corporate social responsibility pro-

"We have partnered you, thepeople of this to completing in record of minerals including uraarea, so that you are in a time during 2014 a pre- nium, zircon, and niobium position to benefit from

gramme.

take place here." said tential net present value of US\$293-million and a fu-Speaking on behalf ture projected 18-year ofover 1000 subjects from mine life.

15 villages who attended The firm's President the presentation cere-Alexander Lemon said the results of the pre-feasibil expressed study positioned profound gratefulness to Malawi globally as a po-Mkango Resources for tential sustainable rare Mkango has now

which is helping to debegun it's definitive feasibility study for the project "Your repeated efforts following the announcetrying to provide us with a ment of positive pre-feasi-

bility study results. The rare earth ele ments expected to be mined at Songwe include Praseodymium. Neodymium, Dysprosium which are used in the manufacture of high strength magnets used in Hybrid electric cars such as the Toyota Prius and europium, terbium and yttrium used in colour phosphors used in flat screen ty's, computers & mobile

phones. ploration activities in the Mkango Resources area since January 2010 also holds another Excluthrough its wholly owned subsidiary, Lancaster Exsive Prospecting License in the Thambani area in Malawi's Southern Dis-The Songwe Hill Rare

trict of Mwanza where it Earth Project has progressed from very early is successfully targeting stage exploratory drilling and exploring for a range feasibility study whose re- over an area of 468km2.

Man carriers his share home

33

Mineral Resource Estimates

In-situ Mineral Resource estimates at 1.0% TREO cut–off grade¹

	In-situ Indicated Mineral Resource at 1% TREO Cut-Off																					
Indicated	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Carbonatite	11.10	3,951	7,208	775	2,676	387	14,997	95	223	27	127	21	48	6	36	5	590	1,178	16,175	1.62	351	12
Fenite	1.37	3,980	7,235	779	2,679	404	15,077	76	186	24	116	19	46	6	32	4	542	1,050	16,127	1.61	301	11
Mixed	0.69	4,520	7,678	774	2,473	335	15,780	63	148	17	79	13	29	4	22	3	362	739	16,519	1.65	335	12
	In-situ Inferred Mineral Resource at 1% TREO Cut-Off																					
Inferred	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
Carbonatite	8.64	3,275	5,974	642	2,218	321	12,430	90	211	25	120	19	46	6	34	5	559	1,115	13,545	1.35	324	11
Fenite	8.27	3,286	5,973	643	2,212	333	12,448	73	180	23	112	18	44	5	31	4	523	1,014	13,462	1.35	295	12
Mixed	1.68	4,559	7,746	781	2,495	338	15,918	53	125	14	66	11	25	3	19	3	304	622	16,541	1.65	248	11

TREO – total rare earths including Y₂O₃; HREO – heavy rare earth oxides including Y₂O₃

REO distribution for different rock types at 1.0% TREO cut-off grade¹

	In-situ Indicated Mineral Resource - REO Distributions at 1.0% TREO Cut-Off																
Indicated	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Carbonatite	24.43	44.56	4.79	16.54	2.39	0.59	1.38	0.17	0.78	0.13	0.30	0.04	0.22	0.03	3.65	100	7.3
Fenite	24.68	44.86	4.83	16.61	2.50	0.47	1.15	0.15	0.72	0.12	0.28	0.04	0.20	0.03	3.36	100	6.5
Mixed	27.36	46.48	4.69	14.97	2.03	0.38	0.90	0.10	0.48	0.08	0.18	0.02	0.13	0.02	2.19	100	4.5
	In-situ Inferred Mineral Resource - REO Distributions at 1.0% TREO Cut-Off																
Inferred	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Carbonatite	24.18	44.11	4.74	16.37	2.37	0.67	1.56	0.19	0.89	0.14	0.34	0.04	0.25	0.03	4.12	100	8.2
Fenite	24.41	44.37	4.78	16.43	2.48	0.54	1.33	0.17	0.83	0.14	0.33	0.04	0.23	0.03	3.89	100	7.5
Mixed	27.56	46.83	4.72	15.08	2.04	0.32	0.75	0.09	0.40	0.06	0.15	0.02	0.11	0.02	1.84	100	3.8

¹ Mineral Resources which are not Mineral Reserves do not have demonstrated economic viability; *Mineral Resources are inclusive of Mineral Reserves;* Individual REO concentrations calculated by applying global proportions per domain from the drilling database

35

In-situ Mineral Resource estimates at different cut-off grades¹

	In-situ Indicated Carbonatite Mineral Resource																					
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	16.31	3,274	5,973	642	2,217	321	12,426	85	200	24	114	18	44	6	32	4	530	1,058	13,484	1.35	322	12
1.0	11.10	3,951	7,208	775	2,676	387	14,997	95	223	27	127	21	48	6	36	5	590	1,178	16,175	1.62	351	12
1.5	5.26	5,022	9,163	985	3,401	492	19,063	103	241	29	137	22	52	7	39	5	639	1,275	20,338	2.03	385	12
								In-	<i>situ</i> Infer	red Carbo	onatite Mi	neral Res	ource									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	17.09	2,568	4,686	504	1,739	252	9,748	77	180	22	102	17	39	5	29	4	476	949	10,698	1.07	304	12
1.0	8.64	3,275	5,974	642	2,218	321	12,430	90	211	25	120	19	46	6	34	5	559	1,115	13,545	1.35	324	11
1.5	1.90	4,539	8,281	890	3,074	445	17,228	99	233	28	132	21	51	6	37	5	616	1,230	18,458	1.85	349	11
									<i>In-situ</i> In	dicated M	lixed Min	eral Resou	irce									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	1.01	3,749	6,369	642	2,051	278	13,088	61	144	17	76	12	29	4	22	3	351	717	13,805	1.38	318	12
1.0	0.69	4,520	7,678	774	2,473	335	15,780	63	148	17	79	13	29	4	22	3	362	739	16,519	1.65	335	12
1.5	0.31	6,051	10,280	1,037	3,311	448	21,127	69	163	19	87	14	32	4	25	3	399	816	21,943	2.19	387	14
_									<i>In-situ</i> In	ferred M	ixed Mine	ral Resou	rce									
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd_2O_3	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	1.90	4,289	7,287	735	2,347	318	14,976	53	125	15	66	11	25	3	19	3	305	624	15,600	1.56	251	11
1.0	1.68	4,559	7,746	781	2,495	338	15,918	53	125	14	66	11	25	3	19	3	304	622	16,541	1.65	248	11
1.5	1.43	4,802	8,158	823	2,628	356	16,766	53	124	14	66	11	25	3	19	3	302	618	17,384	1.74	243	11
							-		<i>In-situ</i> In	dicated Fe	enite Min	eral Resou	irce					-				
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	2.71	2,876	5,228	563	1,936	292	10,895	64	158	20	98	16	39	5	27	4	459	889	11,784	1.18	288	13
1.0	1.37	3,980	7,235	779	2,679	404	15,077	76	186	24	116	19	46	6	32	4	542	1,050	16,127	1.61	301	11
1.5	0.59	5,236	9,517	1,025	3,524	531	19,833	88	217	28	135	22	53	7	38	5	633	1,226	21,060	2.11	334	10
							•		<i>In-situ</i> In	ferred Fe	nite Mine	ral Resou	rce						•			
Cut-Off	Million	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	LREO	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	HREO	TREO	TREO	Th	U
%TREO	Tonnes	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
0.5	17.47	2,564	4,661	502	1,726	260	9,713	62	153	19	95	16	38	5	26	4	446	863	10,577	1.06	271	13
1.0	8.27	3,286	5,973	643	2,212	333	12,448	73	180	23	112	18	44	5	31	4	523	1,014	13,462	1.35	295	12
1.5	1.73	4,631	8,417	907	3,117	470	17,541	88	215	27	134	22	53	7	37	5	627	1,215	18,756	1.88	331	11

¹ Mineral Resources which are not Mineral Reserves do not have demonstrated economic viability; *Mineral Resources are inclusive of Mineral Reserves;* Individual REO concentrations calculated by applying global proportions per domain from the drilling database

REO distribution at different cut-off grades¹

	In-situ Indicated Carbonatite Mineral Resource - REO Distributions at 0.5%, 1.0% and 1.5% TREO Cut-Offs																
Cut-Off	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	24.28	44.29	4.76	16.44	2.38	0.63	1.49	0.18	0.84	0.14	0.32	0.04	0.24	0.03	3.93	100	7.8
1	24.43	44.56	4.79	16.54	2.39	0.59	1.38	0.17	0.78	0.13	0.30	0.04	0.22	0.03	3.65	100	7.3
1.5	24.69	45.05	4.84	16.72	2.42	0.51	1.19	0.14	0.67	0.11	0.26	0.03	0.19	0.03	3.14	100	6.3
		In	-situ Infe	rred Carbo	onatite Mi	neral Reso	ource - REO	Distribut	ions at 0.	5%, 1.0% a	and1.5% 1	REO Cut-	Offs				
Cut-Off	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	24.01	43.80	4.71	16.26	2.35	0.72	1.68	0.20	0.95	0.15	0.37	0.05	0.27	0.04	4.45	100	8.9
1	24.18	44.11	4.74	16.37	2.37	0.67	1.56	0.19	0.89	0.14	0.34	0.04	0.25	0.03	4.12	100	8.2
1.5	24.59	44.86	4.82	16.65	2.41	0.54	1.26	0.15	0.72	0.12	0.27	0.04	0.20	0.03	3.34	100	6.7
	In-situ Indicated Mixed Mineral Resource - REO Distributions at 0.5%, 1.0% and 1.5% TREO Cut-Offs																
Cut-Off	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	27.15	46.13	4.65	14.86	2.01	0.44	1.04	0.12	0.55	0.09	0.21	0.03	0.16	0.02	2.54	100	5.2
1	27.36	46.48	4.69	14.97	2.03	0.38	0.90	0.10	0.48	0.08	0.18	0.02	0.13	0.02	2.19	100	4.5
1.5	27.58	46.85	4.72	15.09	2.04	0.32	0.74	0.09	0.40	0.06	0.15	0.02	0.11	0.02	1.82	100	3.7
In-situ Inferred Mixed Mineral Resource - REO Distributions at 0.5%, 1.0% and 1.5% TREO Cut-Offs																	
Cut-Off	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	27.50	46.71	4.71	15.05	2.04	0.34	0.80	0.09	0.43	0.07	0.16	0.02	0.12	0.02	1.96	100	4.0
1	27.56	46.83	4.72	15.08	2.04	0.32	0.75	0.09	0.40	0.06	0.15	0.02	0.11	0.02	1.84	100	3.8
1.5	27.62	46.93	4.73	15.12	2.05	0.30	0.71	0.08	0.38	0.06	0.14	0.02	0.11	0.02	1.74	100	3.6
			In-situ In	dicated Fe	enite Mine	ral Resour	ce - REO Di	istributio	ns at 0.5%	, 1.0% and	i 1.5% TR	EO Cut-Of	fs				
Cut-Off	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	24.41	44.36	4.78	16.43	2.48	0.54	1.34	0.17	0.83	0.14	0.33	0.04	0.23	0.03	3.89	100	7.5
1	24.68	44.86	4.83	16.61	2.50	0.47	1.15	0.15	0.72	0.12	0.28	0.04	0.20	0.03	3.36	100	6.5
1.5	24.86	45.19	4.87	16.73	2.52	0.42	1.03	0.13	0.64	0.11	0.25	0.03	0.18	0.02	3.01	100	5.8
			In-situ Ir	nferred Fe	nite Mine	ral Resour	rce - REO D	istributio	ns at 0.5%	, 1.0% and	d 1.5%TR	EO Cut-Of	fs				
Cut-Off	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	Total	HREO
%TREO	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0.5	24.25	44.07	4.75	16.32	2.46	0.59	1.45	0.18	0.90	0.15	0.36	0.04	0.25	0.03	4.21	100	8.2
1	24.41	44.37	4.78	16.43	2.48	0.54	1.33	0.17	0.83	0.14	0.33	0.04	0.23	0.03	3.89	100	7.5
1.5	24.69	44.88	4.83	16.62	2.50	0.47	1.15	0.15	0.71	0.12	0.28	0.04	0.20	0.03	3.34	100	6.5

¹ Mineral Resources which are not Mineral Reserves do not have demonstrated economic viability; *Mineral Resources are inclusive of Mineral Reserves;* Individual REO concentrations calculated by applying global proportions per domain from the drilling database

Contact Details

William Dawes Chief Executive will@mkango.ca Alexander Lemon President alex@mkango.ca

Mkango Resources Ltd.

www.mkango.ca Twitter: @MkangoResources Canada + 1 403 444 5979

Calgary Office

706 27 Avenue NW, Calgary, Alberta T2M 2J3 Canada